Enabling Trust Through Continuous Compliance Assurance

Bonnie Morris*, Cynthia Tanner, Joseph D’ Alessandro
Lane Department of Computer Science and Electrical Engineering, West Virginia University
* College of Business and Economics, West Virginia University

Abstract

As the digital world expands the building of trust
and the retention of privacy in information sharing
becomes paramount. The impediment to information
sharing is a lack of trust between the parties, based on
security and privacy concerns, as well as information
asymmetry. In an effort to foster trusted information
sharing we propose a trusted enclave with an embed-
ded Continuous Compliance Assurance (CCA) mecha-
nism as a technology solution. The CCA mechanism if
not too costly in processing, would assure compliance
to all regulatory policies regarding the data to be
shared. A test bed which mimics the trusted enclave
with the embedded CCA module was built to cap-
ture realistic performance statistics. The performance
statistics gathered through the test bed indicate that
real time compliance assurance is feasible, thereby
enabling trusted information sharing.

Index Terms

Embedded Audit Process, Monitored Information
Exchange, Regulatory Compliance, XML Based Pro-
cessing, Trusted Information Sharing

1. Introduction

Continuous compliance assurance (CCA) refers to
the active process of continuously testing and verifying
compliance with established policies by an indepen-
dent or objective third party. CCA is useful in any
situation involving two or more parties who wish to
engage in transactions under conditions of information
asymmetry. Information asymmetry occurs when one
or more parties to a contract cannot perfectly observe
the actions of another party. In the context of in-
terorganizational information sharing, CCA can be a
mechanism for creating trust by reducing information
asymmetry.

There are many situations in homeland security, law
enforcement, and commercial supply chain operations

where the sharing of private information among several
organizations could be mutually beneficial. Neverthe-
less, organizations are often reluctant to share even
when all parties agree on how the shared data are to
be used. Their reluctance to share stems from concerns
that the data recipients might not provide adequate
security or enforce the agreed upon sharing policies.
For homeland security or law enforcement applica-
tions, inappropriate use of shared information could
result in subjects of investigations being tipped off or
intelligence methods and sources being compromised
[1] [2]. In a supply chain context, organizations are
concerned about the disclosure of proprietary informa-
tion about customers, vendors, or operations that could
be used against the organization by competitors. Addi-
tionally, inappropriate disclosure of nonpublic personal
information (NPPI) by a data recipient may result in
violation of privacy laws leading to losses by the data
provider from civil or criminal judgments in court.

The problem arises from information asymmetry and
from the nature of information goods— information can
be costlessly copied and instantaneously distributed,
often leaving behind little or no evidence of the
misappropriation. Once private data is disclosed, it
usually cannot be made private again. Access controls
are necessary but not sufficient to create trust in the
data provider. Access controls limit what data may be
requested and by whom, but they do not control how
the data is subsequently propagated. An authorized
user may copy a file to a laptop hard drive or USB
drive, take it off premises and lose it or intentionally
misuse the data.

A trusted enclave is necessary to protect highly sen-
sitive or confidential information. The enclave would
provide the physical and logical access controls to
prevent unauthorized access or use. Additionally, all
data fusion applications (e.g., applications that identify
data that matches across multiple sources that should
not, or data that should match that does not, or com-
piling data from multiple sources about an entity of
interest by one or more organizations) are executed
within the enclave according to user specified policies,

Trusted Enclave

User or
Enclave
applications I

Data
Fusion &

Analysis
Applications

Data Recipients

I Sharing
Policies
h |
_ |
g :]
@D
3 :
= -
g 3
o
o]
& b S 1 ,
o . I !
Audit Testing
Applications

Figure 1. View of the Design of the Trusted Enclave

with the output subjected to monitoring for compliance
with sharing rules. Testing for compliance assurance
is based on what leaves the enclave, not on data
requests by individuals or applications. Information
sharing policy enforcement, data fusion and analysis,
and assurance testing are done electronically accord-
ing to pre-specified rules. An accessible audit log of
transactions is created to facilitate on-going ex post
analysis of compliance. Figure 1 depicts the design of
the trusted enclave.

An example of a situation in which the trusted
enclave would be useful is as follows. Only a small per-
centage of cargo containers are physically inspected.
Information that helps authorities identify suspicious
containers would benefit all shipping companies. If
shipping companies share information about cargo
container location, they could identify a container
on the dock waiting to be loaded that is listed as
“out of service” according to the container owner’s
records. Logistically, it is necessary to submit the data
to a central location (trusted enclave) where the file
matching application resides. The shipping companies’

information sharing policies would identify what fu-
sion and analysis applications are allowed to access
the shared data within the trusted enclave and specify
what data about containers can be shared, with whom
and under what circumstances. Specifically, they could
prohibit the distribution of any of the shared container
data except when a suspicious container is identified by
the application. Shipping companies would be willing
to share such data only if they had assurance from an
independent third party that the agreed upon policies
or rules for using and sharing that information were
being enforced because the container location data
could provide useful business intelligence to their
competitors and their customers competitors.

We begin our discussion by covering the topic of
Continuous Compliance Assurance and the protoype
we have implemented. We then transition to a discus-
sion of a test bed we have built to assess the perfor-
mance of our prototype, followed by a presentation of
results collected from our test bed. We then conclude
the paper.

Validation
Module

nput
Module

T

Faﬂ'uhe-s Lag Entries

Sharing
Module

Compliance
Module

Cutput
Module

2 e Bl

Logging

Module

Resolving
Module

Figure 2. View of the Design of our Continuous Compliance Mechanism

2. Continuous Compliance Assurance

Extensible Markup Language (XML) is becoming
the industry data exchange standard. It allows in-
teroperability across applications and platforms [3].
Many domains have created XML data standards to
enable different enterprises to exchange data easily and
seemlessly. A few of these standards are: Global justice
XML standard [4], XBRL for financhial applications
[5], and ACORD XML [6] for life, annuity and health
insurance. To enable our CCA mechanism to be incor-
porated in many domains we have accepted XML as
the data transfer standard and have implemented the
system based on XML formatted messages.

The Continuous Compliance Assurance Group at
West Virginia University has built a prototype CCA
system. The system accepts pre-defined XML mes-
sages and verifies that the message adheres to all
applicable corporate and regulatory policies. During
processing the system creates an immutable audit
log of all messages, the policies applied and any
resolutions applied to non-compliant messages. This
embedded in-stream process can stop the delivery of a
non-compliant message or simply strip the offending
data from the message prior to delivery. Thus this
mechanism is capable of terminating and reporting
inappropriate data requests prior to delivery as opposed
to audit mechanisms which are used in an ex post
fashion. The current mechanisms to enforce privacy
and security regulations support enforcement through
access logs and supply a capability to identify inappro-
priate data exchanges but can not stop the exchange.
As an embedded in-stream process our mechanism is
uniquely capable of guarding privacy.

Our CCA module, in its prototype form, is a domain
independent plug-in which processes XML formatted
messages. The module is depicted in the area outlined
by the dotted box in Figure 1. As a plug-in it is possible
to include the module in any web enabled system
which releases its data in XML format. The form of
the messages must be known to the system and the
system must be loaded with all policies which apply
to the domain. The current prototype only includes
the embedded module. The interface to define the
messages, policies and resolutions for non-compliant
messages is still in development.

The CCA process, illustrated in Figure 2, includes
five sub-processes: Input: the identification of the mes-
sage within the system, Validation: the assurance that
the message conforms to the expected format, Shar-
ing: the application of any intra- or inter-organization
policies in relation to the exchange of the information,
Compliance: the enforcement of all international, na-
tional and/or company regulatory policies, and Output:
routing the verified message to the recipient. The
system includes two additional subsystems, Resolving
and Logging. Resolving forces a user defined action to
be taken when a message is found to be non-compliant
to regulatory policies. A message in violation of intra-
or inter-company defined sharing polices is simply
stripped of the offending data elements and sent for-
ward. Logging creates an audit log of the message
which allows both external independent ex post facto
auditing and examination of data access and exchange.

The system database includes information on the
data providers and recipients and the relationships
between them, valid message formats expressed as
XML schema definitions (XSD) [7], sharing policies

Table 1. Machine Specifications and Distribution of Components

[Component [CPU [HDRPM | Memory [Operating System]
CCA Mechanism & Enclave DB Core2 Duo (2.53 GHz) 7200 RPM 2 GB DDR 800 | Linux Server 2.6.28-11
Logging Facility Pentium 4 HT (3.00 GHz) | 10,000 RPM | 1 GB DDR 400 | Linux Server 2.6.28-11
Workload Generator Pentium 4 HT (3.00 GHz) 7200 RPM 1 GB DDR 400 | Linux Server 2.6.28-11

Table 2. Message type descriptions

Number of Elements Size (kB)
Component Mean | Standard Dev. | Median | Mean [Standard Dev. [Median
RAAR 2918 658 2267 144.35 115.37 112.07
Ship Manifest 920 651 694 40.26 31.72 30.43
Alert 3 0 3 0.559 0.0 0.553
Request 3 0 3 0.564 0.0 0.567

expressed as an XSLT [8], compliance policies ex-
pressed in XPath expressions [9] and resolving poli-
cies. Although not provided in the current mechanism
future enhancements of the system will include an
interface for the data sharing partners to specify the
sharing policies pertaining to the data and a second
interface for the internal auditor to specify the appli-
cable regulations. Sharing policies are applied based
on the relationship between the data provider and the
data recipient. Compliance polices are applied based
solely on the contents of the message. The applicable
compliance policies can be determined statically based
on the message type or dynamically based on the
contents of the message. For example, in an applica-
tion involving a global community, applicable privacy
regulations can be determined based on the nationality
of the individual in the message.

To determine that the CCA process, as an in-
stream mechanism, will allow monitored information
exchange within acceptable processing limits we cre-
ated a test-bed environment geared to not only demon-
strate system correctness but also to measure system
viability.

3. Test Bed

We have built a test bed which consists of: a work-
load generator, our CCA mechanism, enclave database
(small scale model), analysis tools, and our logging
facility. Each of these components is implemented
in the Java programming language. Communication
between the components is facilitated through the use
of the Java Messaging Service (JMS) [10] and a pair
of ActiveMQ [11] message brokers. The decoupling
of components in this manner allows us to experiment
with different configurations as the components will al-
ways communicate in the same way (through the JMS
interface). Table 1 describes our current configuration.

Our machines are connected through the college’s local
area network, thus communication between compo-
nents is subject to some network delays. It should
be noted that this configuration is dictated by current
shortages on resources and that it would be entirely
possible to further separate any of the components
(specifically move the enclave database to a different
machine).

3.1. Workload Generator

Our workload generator provides our CCA mecha-
nism with a continuous stream of messages to process.
Our goal is to represent some specific use case of
our system though the modeling of scenario specific
messages. We currently have implemented four basic
message types: Risk Assesment and Analysis Report
(RAAR), Ship Manifest, Alert, and Request. XSDs
representing each of these data models can be found
here [12]. The RAAR is a message containing reports
on suspicious information related to activities. Table 2
displays statistics related to the size and structure of
each of the message types, gathered from the genera-
tion of 20,000 messages. We feel these messages are a
representative subset of a larger super set of messages
related to the example discussed in the introduction
(cargo shipping). The workload generator randomly
generates one of the four previously described mes-
sages and places that message on a queue, where
it waits for the CCA Mechanism to accept it for
processing. It does this at a rate of approximately 3
messages per second.

Another aspect of our workload generator is the
mimicking of the trusted enclave environment de-
scribed above, specifically the relationships between
sharing partners. To achieve this we created a model
enclave database containing prospective users of the
system. We randomly create pairs of users and then

Table 3. Compliant Throughput Results per Message Size

[Message Size (kB) [49.99 [99.99 [149.99 [199.99 [249.99 | 299.99 [349.99 [399.99 [449.99 [499.99 [inf. |
Messages per Second 47.62 20.00 15.15 12.50 10.10 8.70 7.63 6.70 6.17 5.75 4.12
Kilobytes per Second 161.13 | 1488.76 | 1871.81 | 2145.11 | 2212.46 | 2390.25 | 2463.06 | 2488.11 | 261491 | 2717.38 | 2668.03

Throughput Time (sec) .021 .05 .066 .08 .099 115 131 15 162 174 243
Percent of Messages 75% 6% 5% 3.2% 1.5% 1.1% 1% 1% 1% 1% 3.7%

assign each of these pairs a message type at random
(message types described in Table 2). Based on the
assigned message type, we generate the necessary
policies: Validation and Sharing, and link these policies
to the user pair. Generating messages in this manner
ensures that each message will test the full capabilities
of the system: verify user relationship, enforce partner
sharing agreement, and verify compliance to applicable
policies.

3.2. CCA Mechanism

As discussed above, the CCA process consists of
seven core modules: Input, Validation, Sharing, Com-
pliance, Output, Logging, and Resolving. Input accepts
messages from the Workload Generator (through a
queue) and verifies the user’s credentials and also
performs a look-up of all applicable validation, shar-
ing, and compliance policies. Validation next verifies
the message’s form by validating the message against
a XSD. There exists a one-to-one relationship be-
tween message and validation policy. If the message
is found to be of a valid form, it is next passed to
the Sharing module where the message’s content is
verified against a single sharing policy, realized as
an XSLT. The XSLT strips data elements that are
prohibited from distribution by the provider’s policies.
Finally, compliance verifies that the provider’s policy
is not in violation of any corporate or regulatory
policy. What we refer to as compliance policies are
realized as regular XPath 1.0 expressions. These XPath
expressions search the document for offending data. If
none of the expressions return a result, the message is
deemed compliant, otherwise it is non-compliant. One
or many compliance policies exist per message (the set
of applicable policies are retrieved during input).

If at any point during the process, a message fails,
the message is immediately forwarded to a special
module: Resolving. Failures include: no defined user
relationship (detected at Input), invalid message form
(detected at Validation), or non-compliance to a cor-
porate or regulatory policy (detected at Compliance).
Currently, Resolving only acts as a forwarding mech-
anism for failed messages.

3.3. Logging Facility

An important aspect of the CCA Mechanism is the
Logging module which maintains an up-to-date log
of the activity occurring throughout the processing of
a message. This is achieved by sending a copy of
the message to the Logging module before and after
each module operates on it. Characteristics of these
messages are then selected and stored into an audit log.
Some of the characteristics include: providing and re-
ceiving users of the message, message usage, message
content, as well as the time of the log entry. Capturing
and storing this information allows for both external
independent ex post facto auditing and examination of
data access and exchange.

3.4. Gathering Statistics

Our test bed is designed to capture throughput per-
formance statistics for our CCA mechanism. Through
our use of the JMS interface and ActiveMQ, we are
able to attach properties to each of the messages. These
properties are only visible through the JMS interface
and in no way affect the form of the XML document
being processed. Leveraging the use of these proper-
ties, we are able to record timestamps of significant
events in the processing cycle. For instance, we record
the times a message enters and exits a module. This
allows us to assess individual module performance.
Using our result capture strategy, we are able to assess
our system on varying levels of grainularity.

Messages that have passed through the CCA mech-
anism are collected onto a final queue. Our test bed in-
cludes a tool for automatically retrieving and assessing
the messages residing on this queue. The assessment
includes the calculation of average throughput time,
average messages per second, average bytes per sec-
ond, and average time spent in each of our modules,
among other statistics. In the next section, we report
our throughput numbers.

4. Test Bed Results

We sent 20,000 messages through our system and
collected the results, using the configuration displayed

in Table 1. Due to the way we generate our messages,
a certain percentage of the messages will fail (about
25-33%). Of our 20,000 messages, 14,486 of them
were found to be compliant, and therefore successful.
The most computationally intensive case occurs when
a message is found compliant (it visits each module).
As a result, we direct our performance analysis to this
case. Table 3 displays the results collected from this
test, i.e. these message throughputs only pertain to the
14,486 successful messages. The messages are broken
down into tiers by size (in kilobytes); the upper limits
on each of those tiers are displayed in the first row.
Each reported throughput value is an average for that
specific tier. We also report the time per message (for
each tier) and the percentage of messages belonging
to that tier. We can see that as the message grows
larger, the number of messages our system can process
per second steadily decreases, while the number of
kilobytes we are able to process per second increases to
a maximum of approximately 2717 kilobytes/second.
From the statistics we gathered, our average throughput
of compliant messages is: 23.81 messages per second
and 1513.34 kilobytes per second.

5. Conclusion

In this paper we have presented a trusted enclave
environment with an embedded CCA process to facil-
itate information sharing in a secure setting. The CCA
mechanism provides real-time auditing of messages for
compliance to both participant sharing policies and
regulatory policies. One of the major impediments
to real-time or embedded in-stream auditing is the
cost of increased processing time [13]. In a report to
the president on Revolutionizing Health Care Through
Information Technology, the committee found that
other commercial auditing systems consume excessive
storage overhead and degrade system performance,
leading administrators to either turn off the auditing
feature or regularly purge the audit logs [14]. In order
for our CCA module to be successful in enabling
trusted information exchange compliant with all gov-
ernmental, international and corporate regulations, we
must yield performance results which will overcome
the need to turn off the auditing feature. While we
continue to explore methods to increase our processing
throughput, we believe that these results demonstrate
that the mechanism is a viable process to include
in information sharing applications to ensure both
information security and privacy.

6. Acknowledgements

This work was funded in part by Lockheed Martin
Corp., VIACK Corp., and the University of Oklahoma
through the ICFS program.

References

[11 U. S. G. A. Office, “Information sharing: The
federal government needs to establish policies and
processes for sharing terrorism-related and sensitive but
unclassified information,” Tech. Rep., 2006. [Online].
Available: http://www.gao.gov/new.items/d06385.pdf

[2] Lee and Whang, “Information sharing in a supply
chain,” Internation Journal of Technology Management,
vol. 20, no. 3, pp. 373-387, 1999.

[3] L. Seligman and A. Rosenthal, “Xml’s impact on
databases and data sharing,” Computer, vol. 34, no. 6,
pp- 59-67, 2001.

[4] “Global justice xml.” Available:

http://www.it.ojp.gov/jxdm/

[Online].

[5] “Xbrl.” [Online]. Available: http://www.xbrl.org/Home/

[6] “Acord xml standard.” [Online]. Available:
http://www.acord.org/Standards/propertyxml.aspx

[7] “W3c specification: Xml schema language.” [Online].
Available: http://www.w3.org/XML/Schema

[8] “W3c specification: Xml transformations.” [Online].
Available: http://www.w3.org/TR/xslt

[9] “W3c specification: Xpath.” [Online]. Available:
http://www.w3.org/TR/xpath

[10] “Java message service (jms).” [Online]. Available:
http://java.sun.com/products/jms/

[11] “Activemq message broker.”” [Online]. Available:
http://activemq.apache.org/

[12] “Cca message data models.” [Online]. Available:
http://joe-dalessandro.net/cca/xsd

[13] Debreceny, Gray, Ng, Lee, and Yau, “Embedded audit
modules in enterprise resource planning systems: Im-
plementation and functionality,” Journal of Information
Systems, vol. 19, no. 2, pp. 7-28, 2005.

[14] G. Johnson, “Compliance with data protection laws
using hippocratic database active enforcement and au-
diting,” IBM Systems Journal, vol. 46, no. 2, 2007.

