
Applications of Simulation and AI Search: Assessing the Relative Merits of Agile vs
Traditional Software Development

Bryan Lemon, Aaron Riesbeck, Tim Menzies, Justin Price, Joseph D’Alessandro,
Rikard Carlsson, Tomi Prifiti, Fayola Peters, Hiuhua Lu, Dan Port∗

Lane Department of Computer Science and Electrical Engineering, West Virginia University
∗Information Technology Management, University of Hawaii

bryan@bryanlemon.com,tim@menzies.us,{ariesbeck|tprifti|hlu3}@mix.wvu.edu
{justin.n.price|jdalessa57|ricca742|fayolapeters}@gmail.com,dport@hawaii.edu

Abstract—This paper augments Boehm-Turner’s model of
agile and plan-based software development augmented with
an AI search algorithm. The AI search finds the key factors
that predict for the success of agile or traditional plan-
based software developments. According to our simulations
and AI search algorithm: (1) in no case did agile methods
perform worse than plan-based approaches; (2) in some cases,
agile performed best. Hence, we recommend that the default
development practice for organizations be an agile method.

The simplicity of this style of analysis begs the question:
why is so much time wasted on evidence-less debates on
software process when a simple combination of simulation plus
automatic search can mature the dialog much faster?

I. INTRODUCTION

There are too many examples in software engineering
of positions being defended without empirical evidence.
For example, Rumbaugh [1] and Jacobson [2] engaged in
a high-profile and extended debate about the merits of
different styles of object-oriented modeling- without citing
any empirical evidence.

One explanation for this propensity to argue without
evidence is the “data drought” reported by metrics-guru
Norman Fenton. After years of advocating careful data
collection [3], he now despairs of that approach. When data-
based evidence is missing, model-based evidence can fill in
the gaps. Sometimes, software process models are difficult
to build and understand; especially when the uncertainties
associated with the model lead to numerous wide ranges.
Analysts may find the output confusing, rather than clarify-
ing.

With the right automated support, software process model-
ing can be very easy. Given a well-defined theory and some
automatic AI search tools, it is possible to collect model-
based evidence about the value of variants on software
processes.

Our case study concerns requirements prioritization poli-
cies. Such policies control the order in which a team
implements the requirements. The spectrum of these policies
can be characterized by two extremes: traditional plan-based
and agile.

A standard argument is that agile should be used on highly
dynamic projects, whereas plan based should be used on
highly critical projects. Boehm and Turner [4] define five
scales that can characterize the difference between plan-
based and agile methods: project size, project criticality,
requirements dynamism, personnel, and organizational cul-
ture. Previously, at ASE’08 [5], Port & Olkov & Menzies
(hereafter, POM) studied the effects of different prioritiza-
tion policies while adjusting the requirements dynamism. An
advantage of model-based evidential reasoning is the ability
to repeat prior analysis. For example, in the following study,
the POM model is extended along the lines proposed by
Grünbacher [6] then explored using an AI search engine.

Using the model and the AI search engine, we study
plan-based and agile policies in different contexts. We found
(1) no case where agile does worse than plan-based; (2) in
some cases, agile performs much better. This leads to the
conclusion: The development methodology for an organiza-
tion should be agile.

II. SIMULATOR SPECIFICATIONS

POM2 shuffles requirements through three stages: “to
do”, “planned”, and “finally completed”. Within POM2
each Requirement has a cost and value. The require-
ments are organized in trees which are assigned to teams.
Requirements are completed in iterations according to
the budget. The order Requirements are completed is
determined by the requirements prioritization policy.
Projects experience early termination if funding is lost.

To simulate a Project, POM2 accepts 8 input val-
ues: criticality (§II-D1), crit.modifier (§II-D1), culture
(§II-D3), initial known (§II-D2), inter − dependency
(§II-A), size (§II-D4), team size (§II-D4), and dynamism
(§II-D2).

These inputs effect the processing within POM2:

• In high criticality systems, requirements cost more
to develop.

• In high dynamism, the requirements’ cost and
values change frequently.

• Some organizational cultures may frequently re-order
requirements while other organizational cultures are
more prone to ignore value change.

A. Requirements, Trees, Heaps, and Projects

Within POM2, a project is divided into teams, each of
which implements a set of requirements with initial values
and costs as defined by Port et al. [5]. These requirements
are stored in acyclic trees representing the work breakdown
structure. Each team is assigned a different tree from which
new requirements are pulled. To model inter-team cooper-
ation, at each level of the trees, one dependency is added
between two trees at the same level. Depending on place-
ment in the tree, inter-team dependency may significantly
slow down the requirement completion process.

Trees are generated as follows. Nodes are assigned chil-
dren according to an exponential distribution: 1

X% of nodes
have X children.

As a software project progresses it is not unusual for a de-
velopment team to discover that they have new requirements
to complete. We model this as follows:
• number of requirements = size ∗ 2.5 [5]
• We pre-generate the number of new requirements to

be added for each project iteration. Initially labeled as
“hidden”, the new requirements are marked “visible”
when the simulator encounters the iteration for which
they were added.

B. Iterations

Teams maintain a plan, which is a set of requirements
that have been pulled from their heap. These requirements
are then marked as known. Plans are processed in 2 to 6
iterations. Early terminations are very common in iterative
projects if (for example) management decides that the re-
sources of an organization should be transferred to a new
project. After each iteration, the project has a probability of
.9 to continue to the next iteration. This means that a project
only has a 53% chance of finishing.

The number of requirements that can be completed in
each iteration is controlled by the budget. Following POM
[5], the budget is defined as:

budget =
(total initial requirement cost)

number of iterations
(1)

C. Prioritization Policies

POM2 explores three prioritization policies.
1) Plan Based (PB) : A non-agile development method

where requirements are sorted once at the start of de-
velopment using the original value

cost numbers assumed
at the start of the project.

2) Agile2 (AG2) : A development method where re-
quirements are sorted every iteration on policies sort
requirements (every iteration) on value

cost .

D. Boehm and Turner Scales
POM2 implements four of the five scales identified by

Boehm and Turner [7] that distinguished agile from tradi-
tional plan-based projects: project criticality, requirements
dynamism, organization culture, and size. POM2 does
not implement the fifth scale (personnel) due to theoretical
reasons, see §II-D5.

1) Criticality: Boehm and Turner [7] measure criticality
in terms of losses due to impact or defects and ranges from
“none” (best for agile development) to “loss of many lives”.
Thus, plan-based methods are best suited to projects that
must be carefully planned, lest defects cause loss of many
lives.

We assume that X% of the teams are affected by the
criticality, where X = 2 . . . 10. Within our simulator, we
refer to X as the criticality modifier. We adjust the cost of
each requirement in a selected teams tree as follows:

cost′ = cost ∗Xcriticality (2)

2) Dynamism: Project dynamism measures how fre-
quently new requirements are created and how often existing
requirements change value.

Boehm and Turner measure dynamism in terms of the
percent of requirements changed each month and has the
range 50% (best for agile) to 1 (best for planned-based).

To implement this factor, the POM1 assumptions for
dynamism [5] are adopted:
• Initially, we only mark 30% ≤ 70% of the requirements

in the project tree as “visible.” At each iteration, we
make visible new = Poisson(λ) more requirements.

• Another parameter controlling dynamism is σ. At each
iteration, every requirement is visited, and and its value
is altered by: value′ += maxV alue ∗N(0, σ)

• After setting σ, we set λ to 10 % of σ.
3) Culture: For a fully agile project, changing require-

ment values means resorting the requirements in the plan
to ensure that most cost-effective requirement is completed
first. According to Boehm and Turner, culture is measured
in terms of the percent of the staff thriving on chaos and
has the range 90% (best for agile, flexible) to 10% (best for
plan-based, rigid).

The calculation used for the accepted value is:

accepted = value+ (value ∗N(0, σ) ∗ culture) (3)

4) Size: Size is measured in terms of the number of
personnel and has the range 3 (typically, best for agile), 10,
30, 100, and 300 (typically, best for plan-based). The size
of a POM2 project is picked at random from this range and
the number of requirements is then set to size ∗ 2.5.

We planned to build teams using the results of [8] who
report that the size of software development teams has
(min,mean, sd) = (1, 8, 20). However, this leads to a
large number of single-person teams. We modified that result
slightly in consultation with some of our NASA colleagues.

5) Personnel: Having described the scales implemented
in POM2, we now discuss the theoretical problems that lead
to an unimplemented personnel scale. Boehm and Turner
describe project personnel using the Cockburn mixtures
model. In summary, the mixtures model divides program-
mers into three groups:

Alpha: The most productive/flexible programmers.
Beta: Able to perform discretionary method steps.
Gamma:Unable/unwilling to follow shared methods

Applying the conventions of the Boehm and Turner per-
sonnel scale, lower personnel values indicate more alpha
programmers on the team. Combining the COCOMO effort
multipliers [9] and the Cockburn mixtures model, the net
effect was nearly zero.1 For that reason, POM2 ignores
Personnel and will explore this issue in future work.

E. Performance Score

As POM2 requirements are completed, they are moved
to a “done” set. The Sum of Costs and Sum of V alues
are plotted on a (X,Y) plane. When the project is finished,
the plot can be compared to an optimal frontier, obtained by
sorting all the “done” requirements using the final valuecost for
all those requirements. Note that no method can do better
than the optimal frontier.

Scoring works as follows. If a project finishes after
completing, say 100 requirements, then we would score the
run as follows:

1 Take the final value
cost curve for the project.

2 Divide that by the optimal frontier value
cost curve.

III. SEARCHING

Figure 1 is a distribution of 10,000 runs of POM2 scored
as described above. Note that Agile methods maintain equal
or better performance when compared to Plan-based meth-
ods. The Figure 1 results are interesting, but they are a two-
dimensional summary of a ten-dimensional space. Before
adopting the above conclusion, we need to find any special
regions in the 10-D space of POM2.

We define these regions as follows: Given a model with
inputs to a model that are a set of featurei = rangei,
find the smallest subsets that most change the model output.
Each such subset is special region since it is here where the
score changes most. Our preferred tool for this analysis is
KEYS [10]: a greedy search and a Bayesian ranking method
called BORE. Assume that the model has N accessible states
which are the inputs to the model (in our case, our sates are
assignments to the Boehm and Turner scales). These inputs
are randomized from a distribution {Xi, i = 1 . . . N}. A
collection of inputs to the model is called a treatment.

{x1, x2, . . . , xN} = treatment (4)

1For a detailed explanation of the “zero effect” described, reference
http://menzies.us/pdf/09pom2.pdf

Very low dynamism: σ = 0, λ = 0

 0

 100

 200

 300

 400

 500

 600

 700

 50 60 70 80 90 100

F
re

q
u
e
n
c
y

Score

AG2
PB
AG

Medium dynamism: σ = 0.15, λ = 0.015

 0

 100

 200

 300

 400

 500

 600

 700

 50 60 70 80 90 100

F
re

q
u
e
n
c
y

Score

AG2
PB
AG

High dynamism: σ = 2, λ = 0.2

 0

 100

 200

 300

 400

 500

 600

 700

 50 60 70 80 90 100

F
re

q
u

e
n
c
y

Score

AG2
PB
AG

Figure 1: Distribution of Performance scores, controlling only
σ and λ inputs,

After M number of initial samples, a second phase starts
and one of the inputs is fixed to a desired range. This
is performed for each of the input variables (the Boehm
scales) until the stopping criteria is met. KEYS stops if the
improvement from the previous round is less than 5%. The
range is selected using the BORE heuristic. At the next run
the treatment = {fixed}

⋃
{randomized}.

IV. RESULTS

Figure 2 shows the ranges found in KEYS’ treatments,
while randomly selecting prioritization policies and the eight
inputs on POM2. The results are split between two prioriti-
zation policies and three levels of requirements dynamism.
Each combination of policy*dynamism was run 1000 times.

Notice that, in all cases, the treatments found by KEYS
increased the performance scores reported in §II-E by a
statistically significant amount (Mann-Whitney, 95%). Each
cell in Figure 2 shows the percent frequency of that bin
occurring in the treatments found by KEYS.

There are several majority-case effects in Figure 2 that de-
serve our attention. First, there are some strong negative re-
sults that hold across all dynamisms and prioritizations. One

bin 1 bin 2 bin 3 bin 4 bin 5 bin 6 bin 7 bin 8 bin 9 bin 10
criticality .82 .86 .91 .95 1.0 1.04 1.08 1.13 1.17 1.22

criticality modifier 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6 8.4 9.2
culture 0 10 20 30 40 50 60 70 80 90

initial known .40 .43 .46 .49 .52 .55 .58 .61 .64 .67
inter-dependency 0 10 20 30 40 50 60 70 80 90

size (total personnel) 3.0 32.7 62.4 92.1 121.8 151.5 181.2 210.9 240.6 270.3
policy / dynamism team size (people per team) 1.0 5.1 9.2 13.3 17.4 21.5 25.6 29.7 33.8 37.9
plan-based / very low criticality
σ = λ = 0 criticality modifier

culture
initial known 2 4

inter-dependency 1 1 1

size 89 2

team size 1

plan-based / medium criticality 5 21 52
σ = 0.15, λ = 0.0.15 criticality modifier

culture
initial known

inter-dependency 1 2 6 6 8
size

team size 1

plan-based / very-high criticality 1 6 22 58
σ = 2, λ = 0.2 criticality modifier

culture
initial known

inter-dependency 2 3 6 10 11
size

team size 1
agile 2 / very low criticality
σ = λ = 0 criticality modifier

culture
initial known 1 4 12 27

interdependency 1 4 6 5 3

size 72 1

team size 1 4

agile 2 / medium criticality 1 1 1 1 1

σ = 0.15, λ = 0.015 criticality modifier 1 1 1 1

culture 3 10 19 22 29

initial known 1 2 2 2 2

interdependency 1 1 1 1 1

size 97

team size 17 20 11 6 1

agile 2 / very high criticality 1 1 1 1 1 1

σ = 2, λ = 0.2 criticality modifier 1 1 1 1 1 1 1 1 1

culture 1 4 13 17 20 22

initial known 1 1 1 1 1

interdependency 1 1 1 1 1 1 1 1

size 100

team size 15 18 11 5 2 1

Figure 2: The top table shows the division of each numeric inputs divided into ten bins. The rest of this figure shows the percent
frequencies with which a range appears in the treatments found by 1000 runs of KEYS.

input (criticality modifier) was never selected by KEYS.
Two inputs (initial known and inter− dependency) were
never selected in the majority case (> 50% of the runs).

Second, with respect to agile2, there were frequent effects
found for total size of personnel, team size , and culture:

• In 72 to 100% of our agile2 runs, KEYS selected for
the smallest possible total team size.

• In the upper bins for (medium, high dynamism), cul-
tural factors appeared in (80,72)% respectively of the

treatments found by KEYS.
• For medium and very high dynamism, it is useful to

have team sizes of about 5 to 17 people (bin2, bin3,
bin4, bin5).

Curiously, smallest size teams (below 5 people) was never
selected by KEYS. We conclude that fails for very small
teams when programmers spend the majority of their time
interfacing with other teams.

Finally, Figure 2 shows that many results are very similar;

Medium dynamism: σ = 0.15, λ = 0.015

 0

 100

 200

 300

 400

 500

 600

 700

 50 60 70 80 90 100

F
re

q
u
e
n
c
y

Score

AG2
PB

High dynamism: σ = 2, λ = 0.2

 0

 100

 200

 300

 400

 500

 600

 700

 50 60 70 80 90 100

F
re

q
u
e
n
c
y

Score

AG2
PB

Figure 3: 1000 runs of KEYS controlling σ and λ while using
1
10

-th size (3 ≤ size < 32.17) and top 1
10
−th criticality (≥ 1.22)

and choosing at random for the other inputs.

e.g. all the agile2 results offer nearly the same pattern. In
fact, KEYS and Figure 2 show us that POM2 contains two
major divisions of its 10-dimensional space. In terms of
testing our general conclusion, the place to run tests is in the
union of the two divisions: at very high criticality and very
small overall team size. The results of this test is showed in
Figure 3.

When POM2 was run in the union of these two divisions,
agile2 produces much larger median scores than plan-based.
This figure lends support to the general conclusion of this
paper. If management is given a choice between agile2 and
plan-based methods, they should adopt agile2.

V. CONCLUSION

Building software process models can be complicated by a
drought of data. When data is scarce, model-based evidence
can be used to make a reasoned case for reconfiguration
of a project. To help mitigate information overdose, it is
useful to augment a simulation engine with a search engine
that can find the most interesting regions within the model
input/output space.

This paper was a case study with combination of simulator
(POM2) and AI search engine (KEYS). Our AI search
engine explored the state space of our model to find regions
that significantly improved the output performance score of
the model. We found no case where plan-based out-perform
agile2. In fact, sometimes agile2 performed much better than
plan-based. We therefore recommend that:

The default development process be agile2.

Note also that in two areas, POM2 found limits in soft-
ware engineering theory. In order to mature the conclusions
of this paper, two issues need to be addressed:
• What is the effect of mixtures of different types of

programmers on a project?
• What are the patterns of dependencies between require-

ments?
Very simple simulations/search engines can automatically

explore the nuances of a debate. Using such automated
tools, it is possible to make interesting conclusions with
minimal machinery and effort. Our model definitions took
just days of work; the implementation required a few weeks
of work; and the runs to gather our data took just one night.
Consequently, our conclusion is that evidence-less debates
could be replaced, if possible, with debates that use model-
based evidence. We concluded that agile2 performs as good
or much better than plan-based development.

REFERENCES

[1] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorenson, Object-Oriented Modeling and Design.
Prentice-Hall, 1991.

[2] I. Jacobson, M. Christerson, P. Jonsson, and G. Over-
gaard, Object-Oriented Software Engineering: A Use
Case Driven Approach. Addison-Wesley, 1992.

[3] N. E. Fenton and S. Pfleeger, Software Metrics: A
Rigorous & Practical Approach (second edition). In-
ternational Thompson Press, 1995.

[4] B. Boehm and R. Turner, “Using risk to balance agile
and plan-driven methods,” Computer, vol. 36, no. 6,
pp. 57–66, June 2003.

[5] D. Port, A. Olkov, and T. Menzies, “Using simulation
to investigate requirements prioritization strategies,”
in Automated Software Engineering, 2008. ASE 2008.
23rd IEEE/ACM International Conference on, Sept.
2008, pp. 268–277.

[6] P. Grunbacker, “Personal communication,” 2008.
[7] B. T. Boehm, “Balancing agility and discipline: Evalu-

ating and integrating agile and plan-driven methods,” in
proceedings 26th International Conference on Software
Engineering (ICSE), 2004, pp. 718–719.

[8] P. C. Pendharkar and J. A. Rodger, “An empirical study
of the impact of team size on software development
effort,” Inf. Technol. and Management, vol. 8, no. 4,
pp. 253–262, 2007.

[9] B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K.
Clark, B. Steece, A. W. Brown, S. Chulani, and
C. Abts, Software Cost Estimation with Cocomo II.
Prentice Hall, 2000.

[10] T. Menzies, O. Jalali, and M. Feather, “Optimiz-
ing requirements decisions with keys,” Proceedings
PROMISE 08 ICSE, 2008.

